
Informatics 134

Software User Interfaces

Spring 2024

Mark S. Baldwin

baldwinm@ics.uci.edu

4/04/2024

mailto:baldwinm@ics.uci.edu


Agenda

1. User Interface Architecture

2. Assignment 1 & 2: Roll Your OwnWidget(s)

3. Next Class

4. References

1/48



User Interface Architecture



User Interface Architecture

2/48



User Interface Architecture

[Wikipedia, 2021a]

3/48



User Interface Architecture

[Wikipedia, 2021a]

4/48



User Interface Architecture

User Interfaces from an Architectural

Level

GUIs rely on many different units of

code to function

Data propagates between these units

to represent state and interaction

Each unit is responsible for making

decisions on how to handle a particular

operation

5/48



User Interface Architecture

The Button Example

What are some observations that we can

make about its functionality?

6/48



User Interface Architecture

The Button Example

Clickable

Can visually change in response to interaction

Can display data

Can execute a command

7/48



User Interface Architecture

The Button Example

In computer science, these observations are represented by a state chart and

implemented through a state machine.

8/48



User Interface Architecture

The Button Example

In computer science, these observations are represented by a state chart and

implemented through a state machine.

Let’s revisit:

Clickable

Can visually change in response to interaction

Can display data

Can execute a command

9/48



Button State Chart

How would you complete the table?

Current State Transition Present State

cs-1 t-1 ps-1

cs-2 t-2 ps-2

cs-3 t-3 ps-3

10/48



Button State Chart

Current State Transition Present State

Idle Mouse Down Pressed

Pressed Mouse Up Execute

Execute Mouse Up Idle

11/48



User Interface Architecture

Button State Chart

The simple button example represented

using a state chart diagram

12/48



User Interface Architecture

The Button Example

Although this simple button example could work, most buttons (and other widgets) are

typically far more complex.

What are some other states we might need to support in a fully featured button?

13/48



DEMO

13/48



User Interface Architecture

Let’s consider a slightly more complex

example

What are some observations we can make

about the various widgets in this user

interface?

14/48



User Interface Architecture

Hierarchy

15/48



User Interface Architecture

GUIs are structured hierarchically

Some widgets can contain other

widgets

Container widgets are not always

visible

Hierarchical composition supports

layout and communication between

widgets

16/48



User Interface Architecture

Hierarchical Composition

Layout managers

Event handling and propagation

17/48



User Interface Architecture

UI’s are hard to implement...

From a design perspective (more on

that later!)

From a programming perspective

18/48



User Interface Architecture

From a programming perspective

Reactive, must respond to difficult to

predict human behavior

Event-based, difficult to model and

modularize

Dependent on multi-processing

(peripherals, displays, local/remote

communication)

19/48



User Interface Architecture

From a programming perspective

Must be robust enough to handle:

Device input

Video and audio

Background processes

20/48



User Interface Architecture

From a programming perspective

Must be robust enough to:

Avoid crashes

Support recovery (help, rollback/undo,

escape/abort)

What is going on here?

21/48



User Interface Architecture

From a programming perspective

Consider the difference between: and:

22/48



User Interface Architecture

From a programming perspective

Both perform the same action, but the

graphical UI must also:

Support modal

Cancel (abort/escape)

Gather and display system resources

Search

and many more...

23/48



User Interface Architecture

From a programming perspective

Design patterns, to the rescue?

Design patterns provide a common language upon which designers and developers

can reason about intent and function.

24/48



User Interface Architecture

On design patterns

“Each pattern describes a problem which occurs over and

over again in our environment, and then describes the core

of the solution to that problem, in such a way that you can

use this solution a million times over, without ever doing it

the same way twice.”

——[Alexander, 1977]

25/48



User Interface Architecture

From a programming perspective

UI’s manage complexity through design

patterns

26/48



The Observer Pattern

[Wikipedia, 2021b]

26/48



User Interface Architecture

From a programming perspective

The Observer Pattern

A standard model for handling

event propogation across

nearly all UI toolkits

Some examples:

Microsoft .NET

TypeScript

Angular

React

Java

27/48



The State Pattern

[Wikipedia, 2021c]

27/48



User Interface Architecture

From a programming perspective

The State Pattern

A standard model for

managing object behavior

when it’s internal state

changes

Some examples:

Microsoft .NET

TypeScript

Angular

React

Java

28/48



User Interface Architecture

From a programming perspective

When a simple button is filled with so much responsibility...

• Idle state

• Hover state

• Mouse up/down

• Pressed/released

• Hover/idle down?

We can rely on design patterns to manage the complexity. State and Observer are

frequently paired together to abstract much of this complexity into patterns that are

easier to reason about...but...

29/48



User Interface Architecture

Design patterns are not perfect

As UI complexity grows, design patterns can lead to code that is hard to learn. The

observer pattern, for example:

Promotes side-effects: Since a subject is decoupled from its observer, an event

(click, hover) can have n observers...

Difficult to trace control flow and debug

30/48



Observer1, Observer2, ObserverN

[Wikipedia, 2021b]

30/48



User Interface Architecture

Deprecating the Observer Pattern

Work by Martin Odersky (Scala, Generic

Java, many other contributions)

Via Scala.React system, paradigm shift

from observer-based to data-flow

based model

[Maier et al., 2010]

31/48



Today we see a combination of both in many modern web frameworks

Data-flow in Angular

1 import { Component } from '@angular/core';

2

3 @Component({

4 selector: 'app-hello',

5 template: `

6 <h1>{{ message }}</h1>

7 <button (click)="updateMessage()">

8 Update Message

9 </button>

10 `

11 })

12 export class HelloComponent {

13 message: string = 'Hello World!';

14

15 updateMessage() {

16 this.message = 'New message!';

17 }

18 }

19

Observer in Angular

1 import { Component } from '@angular/core';

2 import { MyService } from './my.service';

3

4 @Component({

5 selector: 'my-component',

6 template: `<div>{{ message }}</div>`

7 })

8 export class MyComponent {

9 message: string;

10

11 constructor(private myService: MyService) {

12 this.myService.observableMessage$

13 .subscribe((message) => {

14 this.message = message;

15 });

16 }

17 }

18

32/48



Declarative vs. Imperative

Data-flow

Less error prone without event

handling/callbacks

Declarative, so easier to reason about

and learn

Known to be more scalable and

responsive

Observer

Loose coupling between objects

Support for modularity

33/48



User Interface Architecture

What can we learn?

Computational systems are filled with complexity

We need structure and organization to manage the complexity

Individual widgets and the graphical interfaces that contain them require patterns

and architectures

Design patterns and architectures can help us communicate and envision how to

bring disparate elements together

34/48



Assignment 1 & 2: Roll Your

Own Widget(s)



A1-A2: Custom Graphical Toolkit

We will be using SVG

SVG.js (https://svgjs.dev/)

No dependencies–fast

Choose your own editor or IDE

35/48



A1-A2: Custom Graphical Toolkit

Hierarchy in SVG

Let’s start with a look at hierarchy in raw SVG using SVG.js

36/48



1 import {SVG} from './svg.min.js';

2

3 SVG.on(document, 'DOMContentLoaded', function(){

4 var draw = SVG().addTo('body').size('1000px','1000px');

5 var window = draw.group();

6 window.rect(400,400).stroke("orange").fill("white");

7

8 var group = draw.group();

9 var rect = group.rect(200, 30).fill("white").stroke("black");

10 var text = group.text("hello").move(2,4);

11 var caret = group.line(45, 2.5, 45, 25).

12 stroke({ width: 1, color: "black" });

13

14 group.move(100,100);

15

16 window.add(group);

17 window.move(100,100);

18 });

37/48



A1-A2: Custom Graphical Toolkit

SVG and the DOM

Which language?

Javascript or Typescript?

Typescript is built on strong types and object oriented principles

Javascript does not require transpiling

38/48



A1-A2: Custom Graphical Toolkit

SVG and the DOM

Object Oriented Model

Already popular with GUI toolkits

Conceptually similar to primitives and aggregates

Easier (IMO) to reason about how a hierarchy should be structured.

39/48



Object Oriented Hierarchy in Typescript

Abstraction

Class == graphical object

Instances

Inheritance

1 interface WidgetState{

2 ...

3 }

4

5 class Window implements WidgetState{

6 ...

7 }

40/48



Object Oriented Hierarchy in Typescript

Abstraction

Class == graphical object

Instances

Inheritance

1 abstract class Component implements IAccessibility {

2

3 }

4

5 class Widget extends Component{

6 constructor(){

7 super(100, 50);

8 ...

9 }

10 }

41/48



1 let w = new Window(500,500);

2 let btn = new Button(w);

3 btn.backColor = "blue";

42/48



A1-A2: Custom Graphical Toolkit

Object Oriented Model

Already, you can see how decisions need to be made.

Design and optimize classes and interfaces to avoid duplicate code (costly

space/performance)

Encapsulate when possible (the Button class should not need to worry about

backcolor change)

Sensible names and parameters

43/48



A1-A2: Custom Graphical Toolkit

You will create the following widgets (and more!):

• Button (use starter code, customize)

• Check Box

• Radio Button

• Scroll Bar

• Progress Bar

• Custom (your choice)

44/48



A1-A2: Custom Graphical Toolkit

You will be responsible for all of the following:

• Apply a custom theme across all of your widgets

• Implement features

• Create a state chart for each widget

• Create a small GUI program that makes use of all of your widgets

45/48



A1-A2: Custom Graphical Toolkit

Getting started:

• Full assignment is upon the course website

• Start looking at the SVG.js documentation

• Start working on your button

• We will be covering more over the next few weeks

46/48



Let’s Dive In!

46/48



Next Class



Wednesday

• Structured Graphics

• Deeper Overview of SVG and the custom toolkit

47/48



References



References i

Alexander, C. (1977).

A pattern language: towns, buildings, construction.

Oxford university press.

Maier, I., Rompf, T., and Odersky, M. (2010).

Deprecating the observer pattern.

Technical report.

Wikipedia (2021a).

Graphical user interface.

Wikipedia (2021b).

Observer pattern.

Wikipedia (2021c).

State pattern.

48/48


	User Interface Architecture
	Assignment 1 & 2: Roll Your Own Widget(s)
	Next Class
	References

