Informatics 134

Software User Interfaces
Spring 2024

UCI

University of
California, Irvine

Mark S. Baldwin

baldwinm@ics.uci.edu

4/04/2024

mailto:baldwinm@ics.uci.edu

1. User Interface Architecture

2. Assignment 1 & 2: Roll Your Own Widget(s)

3. Next Class

4. References

1/48

User Interface Architecture

User Interface Architecture

User Interface itecture

LELGIVETS
Vit
R == ouTPUT

Video subsystem

o (GEM/TTM) DRM
® -
() Audlo subsystem
@ . ALSA
= e e
]

evdev

Input subsystem

Linux kernel

[wikipedia, 2021a]

3/48

User Interface itecture

Hardware

AL = e e m e ==y
» m Latency? 1

B

e == ouTPUT

Video subsystem
o « (GEM/TTM) DRM
®

= Audio subsystem
@ - ALsA
=" iges game consare
’

evdev

Input subsystem

Linux kernel

[Wikipedia, 2021a]

4/48

User Interface Architecture

User Interfaces from an Architectural A

Level

Drawing API

GUIs rely on many different units of
code to function

Data propagates between these units Graphical
to represent state and interaction Subsystem
Each unit is responsible for making

decisions on how to handle a particular

operation Kemel

e

5/48

User Interface Architecture

The Button Example

What are some observations that we can
make about its functionality?

Search Locations

6/48

User Interface Architecture

The Button Example

Clickable
Can visually change in response to interaction
Can display data

Can execute a command

7/48

User Interface Architecture

The Button Example

In computer science, these observations are represented by a state chart and
implemented through a state machine.

8/48

User Interface Architecture

The Button Example
In computer science, these observations are represented by a state chart and
implemented through a state machine.
Let's revisit:
Clickable
Can visually change in response to interaction

Can display data

Can execute a command

9/48

Button State Chart

How would you complete the table?

Current State Transition Present State
cs-1 t-1 ps-1
cs-2 t-2 ps-2
cs-3 -3 ps-3

10/48

Button State Chart

Current State

Transition

Present State

Idle
Pressed
Execute

Mouse Down
Mouse Up
Mouse Up

Pressed
Execute
Idle

11/48

User Interface Architecture

Mouse Down

Button State Chart start 0—’@
—>

The simple button example represented l wouse Up

using a state chart diagram ‘

Start

12/48

User Interface Architecture

The Button Example

Although this simple button example could work, most buttons (and other widgets) are
typically far more complex.

What are some other states we might need to support in a fully featured button?

13/48

DEMO

User Interface itecture

Let’s consider a slightly more complex
example

What are some observations we can make
about the various widgets in this user
interface?

OpenFiles

Documents

B Teaching

+ Other Locations

Character Encoding: | Auton etected AllTextFiles v

PlainText v TabWidth: 8 v LnT, Col1 ~ NS

14/48

User Interface Architecture

.
Hierarc hy Modal Window
Menu Bar Folder List Location Bar
Open Button Cancel Button Tree View Text Input

15/48

User Interface Architecture

GUIs are structured hierarchically

Some widgets can contain other L=)l JCe l ~ |

widgets = = i ,l ==

Container widgets are not always
visible

Hierarchical composition supports
layout and communication between
widgets

16/48

User Interface Architecture

Hierarchical Composition A

Layout managers

X X Drawing AFI
Event handling and propagation

Graphical
Subsystem

Kernel

e

17/48

User Interface Architecture

Ul's are hard to implement...

From a design perspective (more on p edit / Settings
that later!)

From a programming perspective

18/48

User Interface Architecture

What other see What you see

From a programming perspective

Reactive, must respond to difficult to
predict human behavior
Event-based, difficult to model and
modularize

Dependent on multi-processing
(peripherals, displays, local/remote
communication)

19/48

User Interface Architecture

From a programming perspective

Must be robust enough to handle:
Device input
Video and audio
Background processes

20/48

User Interface Architecture

2 [s R e e————————

From a programming perspective Qan

Must be robust enough to:

Avoid crashes

Support recovery (help, rollback/undo,
escape/abort)

nmﬂmmnmmF et
i

|

What is going on here?

21/48

User Interface Architecture

From a programming perspective

Consider the difference between:

ol mark@fedora:~ Q

1]
x

[markgfedora ~]$ gedit /home/mark/Documents/notes. txt]]

Al

PlainText ¥ TabWidth:8 v Ln1,Col1 v NS

22/48

User Interface Architecture

From a programming perspective e

Both perform the same action, but the
graphical Ul must also:

Support modal

Cancel (abort/escape)

Gather and display system resources
Search

and many more...

23/48

User Interface Architecture

From a programming perspective

Design patterns, to the rescue?

Design patterns provide a common language upon which designers and developers
can reason about intent and function.

24/48

User Interface Architecture

On design patterns

A Pattern Language
ildis C uction

“Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core
of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it
the same way twice."”

——[Alexander, 1977]

25/48

User Interface Architecture

From a programming perspective

Ul's manage complexity through design
patterns

Search Locations

26/48

The Observer Pattern

Subject Observer «1 ol o
attachic) abservers . Subject =Observert Observerd

detachial - update] ; |

notity) attachloll | :

_ attachlodl I

for ach oin observers: |T|"' : lr'

a_update]); nolify{) | |

|—| | I

e | 1

Subjectl Ohbserverl Ohserver2 updatef] | :

- slate - sLate -slate ‘ge‘tEtahE'n I

-
getState() () W] Sam datep) |
setStatel) update] update(] Sampk upda =||

Tsuhjact

[Wikipedia, 2021b]

eI | _getState])
=

|
1
Diagram]]I]] |
|
i

User Interface Architecture

From a programming perspective

The Observer Pattern Some examples:

A standard model for handling Microsoft .NET
event propogation across TypeScript

nearly all Ul toolkits Angular

React
Java

27/48

The State Pattern

mrmerfacen
State :Context Stated State?
Context state S-omEs Statel Stated
operation (] i i
| |
& 4 opemtionlthisl |
1 Ll
1
state .operation(); : _:setEtateIEtahe)l J
| I
F————t————
I I ! dperation(this]
1 1 L
I
Statel Statel StateiStatel] |
) I
I) _ |
=ration(] =ration]
Diagram s - Diagram | l
1 1

[wikipedia, 2021c]

User Interface Architecture

From a programming perspective

The State Pattern Some examples:

A standard model for Microsoft .NET
managing object behavior TypeScript
when it's internal state

Angular
changes

React

Java

28/48

User Interface Architecture

From a programming perspective

When a simple button is filled with so much responsibility...

* Idle state

* Hover state

e Mouse up/down
e Pressed/released

 Hover/idle down?

We can rely on design patterns to manage the complexity. State and Observer are
frequently paired together to abstract much of this complexity into patterns that are
easier to reason about...but...

29/48

User Interface Architecture

Design patterns are not perfect
As Ul complexity grows, design patterns can lead to code that is hard to learn. The
observer pattern, for example:

Promotes side-effects: Since a subject is decoupled from its observer, an event
(click, hover) can have n observers...

Difficult to trace control flow and debug

30/48

Observer1, Observer2, ObserverN

Subject Obserier
atachic) obzervers .

detachial .l update]
niotify [l

for ach oin observers:

setStatel) l"l
|

Sample

a_updatel);
Subject Ohbserver1 Observer2
-state - state -state
getState() " P
setState() update() update(]

Clazz

Diagram

Tsuhject

51 ol

sSubject] :Observert

|
attach{al]l |
attach(ad]

-

-

T

& |

notify() I

- |
updatel] |

_gethtate()

-

| _getstaten
-

O

[Wikipedia, 2021b]

User Interface Architecture

Deprecating the Observer Pattern

Work by Martin Odersky (Scala, Generic
Java, many other contributions)

Via Scala.React system, paradigm shift
from observer-based to data-flow
based model

[Maier et al., 2010]

31/48

Today we see a combination of both in many modern web frameworks

Data-flow in Angular

import { Component } from '@angular/core';

@Component({
selector: 'app-hello',
template
<h1>{{ message }}</h1>
<button (click)="updateMessage()">
Update Message

</button>
b
export class HelloComponent {
message: string 'Hello World!';

updateMessage() {
this.message 'New message!';

Observer in Angular

import { Component } from '@angular/core';
import { MyService } from './my.service';

@Component({

selector: 'my-component',

template: ‘<div>{{ message }}</div>"
b
export class MyComponent {

message: string;

constructor(private myService: MyService) {
this.myService.observableMessage$
.subscribe((message) => {
this.message = message;

1)g

32/48

Declarative vs. Imperative

Data-flow Observer
Less error prone without event Loose coupling between objects
handling/callbacks Support for modularity
Declarative, so easier to reason about
and learn

Known to be more scalable and
responsive

33/48

User Interface Architecture

What can we learn?

Computational systems are filled with complexity
We need structure and organization to manage the complexity

Individual widgets and the graphical interfaces that contain them require patterns
and architectures

Design patterns and architectures can help us communicate and envision how to
bring disparate elements together

34/48

Assignment 1 & 2: Roll Your
Own Widget(s)

A1-A2: Custom Graphical Toolkit

We will be using SVG

SVG.js (https://svgjs.dev/)
No dependencies—fast
Choose your own editor or IDE

35/48

A1-A2: Custom Graphical Toolkit

Hierarchy in SVG

Let’'s start with a look at hierarchy in raw SVG using SVG.js

36/48

«

C @ @ D loalost

import {SVG} from './svg.min.js';

SVG.on(document, 'DOMContentLoaded', function(){

)3

var draw = SVG().addTo('body').size('1000px"', " '1000px');
var window = draw.group();
window.rect(400,400).stroke("orange").fill("white");

var group = draw.group();
var rect = group.rect(200, 30).fill("white").stroke("black");
var text = group.text("hello").move(2,4);
var caret = group.line(45, 2.5, 45, 25).
stroke({ width: 1, color: "black" });

group.move(100,100);

window.add(group);
window.move(100,100);

37/48

A1-A2: Custom Graphical Toolkit

SVG and the DOM

Which language?

Javascript or Typescript?
Typescript is built on strong types and object oriented principles

Javascript does not require transpiling

38/48

A1-A2: Custom Graphical Toolkit

SVG and the DOM

Object Oriented Model

Already popular with GUI toolkits
Conceptually similar to primitives and aggregates

Easier (IMO) to reason about how a hierarchy should be structured.

39/48

Object Oriented Hierarchy in Typescrip1l: T e

Abstraction s}
Class == graphical object g
5 class Window implements WidgetState{
Instances 6
Inheritance 7}

40/48

Object Oriented Hierarchy in Typescrip1l:

abstract class Component implements IAccessibility {

Abstraction -
Class == graphical object g

5 class Widget extends Component{
Instances 6 constructor(){
Inheritance 7 super(100, 50);

8 cee

9 }

10}

41/48

Window

1 let w = new Window(500,500);
2 let btn = new Button(w);
3 btn.backColor = "blue";

42/48

A1-A2: Custom Graphical Toolkit

Object Oriented Model

Already, you can see how decisions need to be made.

Design and optimize classes and interfaces to avoid duplicate code (costly
space/performance)

Encapsulate when possible (the Button class should not need to worry about
backcolor change)

Sensible names and parameters

43/48

A1-A2: Custom Graphical Toolkit

You will create the Following widgets (and more!):

 Button (use starter code, customize)
» Check Box

* Radio Button

* Scroll Bar

* Progress Bar

e Custom (your choice)

44/48

A1-A2: Custom Graphical Toolkit

You will be responsible for all of the following:

» Apply a custom theme across all of your widgets
 Implement features
« Create a state chart for each widget

 Create a small GUI program that makes use of all of your widgets

45/48

A1-A2: Custom Graphical Toolkit

Getting started:

 Full assignment is upon the course website

« Start looking at the SVG.js documentation

« Start working on your button

« We will be covering more over the next few weeks

46/48

Let’s Dive In!

Next Class

Wednesday

e Structured Graphics
» Deeper Overview of SVG and the custom toolkit

47/48

References

References i

E Alexander, C. (1977).
A pattern language: towns, buildings, construction.
Oxford university press.

E Maier, I, Rompf, T., and Odersky, M. (2010).
Deprecating the observer pattern.
Technical report.

B wikipedia (2021a).

Graphical user interface.

B wikipedia (2021b).
Observer pattern.

B wikipedia (2021¢).

State pattern.

48/48

	User Interface Architecture
	Assignment 1 & 2: Roll Your Own Widget(s)
	Next Class
	References

