

Informatics 134

Software User Interfaces Spring 2024

Mark S. Baldwin baldwinm@ics.uci.edu 04/16/2024 1. Upcoming

2. Graphical Toolkits and Accessibility

3. References

Upcoming

Upcoming

Agenda

Today:

- Accessibility and Toolkits lecture
- A1 DUE TONIGHT

Thursday:

• Design and Methods

Next Week:

- Keep working on A2/A3 (DUE 4/23)
- Start working on course project

Graphical Toolkits and Accessibility

What is accessibility?

Accessibility

Historical Perspective

Transition from the terminal to a GUI

Ushered in personal computing era (good)

Ushered in the accessibility era (not so good)

Accessibility

Historical Perspective

Although millions of new people were now **able** to understand and make use of computational systems, millions of people were simultaneously **unable** to use and operate new graphical based systems.

[theverge.com, 2021]

The Graphical User Interface Crisis: Danger and Opportunity

"Our intuition tells that the more an interface is optimized for a person who can see, the less useful that computer will be to people who cannot see."

----[Boyd et al., 1990]

Accessibility

Historical Perspective

According to [Boyd et al., 1990], the problem manifested in two major categories:

- 1 Perceptual: Screen rendering via pixels requires deciphering of graphical information
- 2 Control: Interaction with visual representations of information and manipulation and control of the flow of information

[theverge.com, 2021]

WIMP (?):

Transition from a concise command language To visual metaphors – graphical representations of everyday objects

			BLOCKED	IGNORED	CAUGHT		TIME	
ND								
		888999999	888999999	88881000	<88814000			
		888899000	888899000	88891000	<88884002			
		00000088			4b817efb			
					ced824eff			
					4b817efb			
					4b817efb			-ba
					<88034a01			
					4b817efb			
					<ec824eff< td=""><td></td><td></td><td></td></ec824eff<>			
								pyt
					4b817efb	pts/8		bas
					<ed824eff< td=""><td></td><td></td><td></td></ed824eff<>			
					4b817efb			
					4b817efb			
	1666462 #fedora ~				<f3d1fef9< td=""><td>pts/6</td><td></td><td></td></f3d1fef9<>	pts/6		

[theverge.com, 2021]

Gaining Access: Enter the Screen Reader IBM Screen Reader/DOS (1984) IBM Screen Reader/2 (1986-1994) James Thatcher at IBM adapted early work on speech synthesis to create SAID, the Synthetic Audio Interface Driver [Thatcher, 1994].

...

Gaining Access: Enter the Screen Reader

Early version of SR/2 relied on a separate custom keyboard to control speech synthesis to avoid system conflicts!

The key principle from Thatchers work was that text-based DOS and GUI are different interfaces for doing the same thing. So, the solution was to map GUI to textual equivalents [Thatcher, 1994].

"Abstract away what is graphical about the graphical user interface."

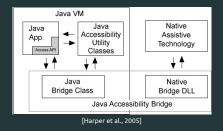
From access to degrees of access

By mid-1990's focus changed to efficiency, coherence, exploration, and cost

Refinement of the abstraction – developing a consistent, reusable, lexical understanding of graphical widgets

Locate widgets without a mouse, support exploration, interact without clicking

Consistent mental model (WHY?)


From access to degrees of access

The Mercator Project (Georgia Tech, Center for Rehab Technology) GUIB: Textual and Graphical User Interfaces for Blind People (European Commission, Technology Initiative for the Disabled and Elderly Persons or TIDE)

interaction object	example	braille-based presentation	example	speech-based presentation	example	nonspeech-based presentation	example
caret, mouse pointer	te¢kt ⊵	one braille charac- ter	t∎xt ■	text around caret is spoken	"e"	audio "click" at caret	t e click x t
text, text attributes	sample	braille, attributes through dots 7 and 8 or on request	<u>sam</u> ple	text is spoken, attributes are ver- balized (??)	"sample"	pitch of speech is modified for attrib- utes	
window	File Edit Seweth	window frame in braille name is spoken pop-up, move, size by sound	+[-] Notepad-(Unt (1)17) F Pile E Edit S Search	name is spoken	"notepad"	auditory icon for window object, modified for popup, iconify, or focus	tapping on glass sound
icon	Dustbin	name in braille	[Icon] Dustbin		"dustbin"	auditory icons	sound of dropping something in a trashcan
menu	n- File Dynkess Window Vigets Amage Misimize on Use Vigeve Settings on	all items in braille vertical or hori- zontal layout	F File O Options w Wi *A@Auto Arrang N Hininize on *S Save Settin	new selection is spoken	"auto arrange"	auditory icon for menu-button, pitch is modified relative to location in menu	flipping sound at a high pitch
scroll bar	•14003050037	in braille	■-□■	status is verbalized	"slider at zero percent"	auditory icon for scollbar, location conveyed with pitch	slide whistle sound, low pitch
edit field	winword ene	in braille, selection with dots 7 and 8	winword.exe	text is spoken	"winword dot exe"	auditary icon for editable text field	sound of an old- fashioned typewriter
list box	DetCh batch dict dirk des dustbin	all items in braille	C:\ bstch bc dict dirk dog dustbin	selection is spoken	"c colon backslash"	auditory icon for list, pitch is modi- fied relative to lo- cation in list	line-printer sound at a high pitch
button	Yes	in braille	[Y Yes]		"yes"	auditory icon for push button	sound of pushing an old elevator button

From access to degrees of access

Projects like Mercator and GUIB influenced the design and implementation of accessibility API's in programming languages like Java, .Net, Cocoa (OSX)

Accessibility

Historical Perspective

From *access* to *degrees of access* An example from Microsoft Visual Studio

Pr	operties	- ↓				
m	mainForm System.Windows.Forms.Form					
	24 🖓 🗲 🖉					
Ξ	Accessibility					
	AccessibleDescription					
	AccessibleName					
	AccessibleRole	Default				
Ξ	Appearance					
	BackColor	Control				
	BackgroundImage	(none)				
	BackgroundImageLayou	Tile				
	Cursor	Default				
Đ	Font	Microsoft Sans Serif, 8.25pt				
	ForeColor	ControlText				
	FormBorderStyle	Sizable				
	RightToLeft	No	-			
A	ccessibility					

When converted to code:

- 1 //describes control
- 2 mainForm.AccessibleDescription = "the main form";
- 3 //name reported to accessibility aids
- 4 mainForm.AccessibleName = "My Program";

learn more

From *degrees of access* to *supporting access*

Supporting Access

The WebAIM Million: 2019-2021

Over 51 million a11y errors, avg of 51.4 errors per page 97.4% of home pages had detectable WCAG2 failures 65% missing alt text for images 25% empty buttons or button misuse Today we *have* the ability to make software accessible, but we lack the *desire or awareness* to make it so.

Why is the second example *more* accessible?

- <div>Next</div>
- <button>Next</button>

Why is the second example *more* accessible? Semantics

<div>Next</div>

state

Which example is *harder* to implement?

Semantic HTML

They require the same amount of effort :) Plus:

Easier to reason about, less code (don't have to add accessibility) Therefore...lighter/faster/better optimization (SEO, etc.) Browser accessibility engine translates accessible functions automatically (*e.g.*, Tab and Enter keys, purpose)

see: HTML: A good basis for accessibility for a more detailed overview.

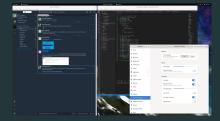
Accessibility

The Visuospatial Sketchpad

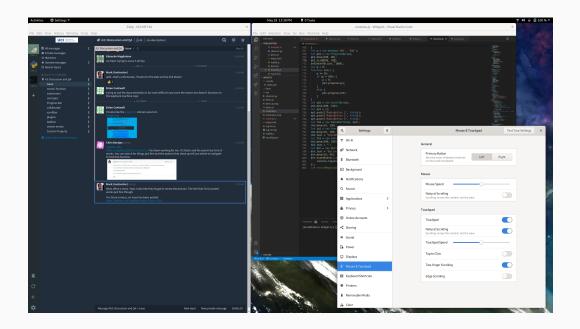
Making graphical interfaces accessible is more than just semantics. In his work on human working memory, Alan Baddeley [Baddeley, 1992] identifies the visuospatial sketchpad as:

"virtual environment for physical simulation, calculation, visualization, and optical memory recall."

Move optically retained information from short-term to long-term memory and back again

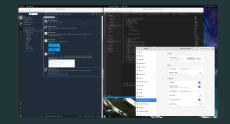

Think about how humans recognize faces

visual cache - holds information about form and color

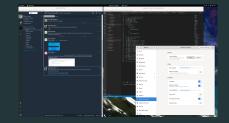

inner scribe - manages spatial and movement information

The Visuospatial Sketchpad

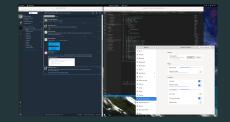
Take a minute to study the screen shot pictured here. Can you identify some ways that information is communicated visually?


Remind Mark: Full screen image on next slide ;)

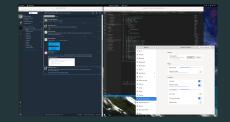
Accessibility


The Visuospatial Sketchpad

Visual glance Spatial arrangement Color


Accessibility

How do we make these visual enhancements more accessible?


How do we make these visual enhancements more accessible?

Hierarchy! Shortcuts (skip links, etc.) Color alternatives, high contrast

How do we make these visual enhancements more accessible?

Hierarchy! Shortcuts (skip links, etc.) Color alternatives, high contrast

Demo Video

https://vimeo.com/231640164

Accessibility

Supporting Access

How can we make our custom toolkit widgets accessible?

Button 2	Hello INF134
RadioButton 1 RadioButton 2 RadioButton 3	•

Supporting Access

Based on SVG, so at a minimum follow web standards

Rely on Aria roles with custom widgets

```
n enum RoleType {
    button = "button",
    checkbox = "checkbox",
    ...
    }

    interface IAccessibility {
    set role(role: RoleType);
    get role(): RoleType;
}
```

Supporting Access

Based on SVG, so at a minimum follow web standards

Rely on Aria roles with custom widgets

class Button extends Widget{
<pre>constructor(parent:Window){</pre>
<pre>this.role = RoleType.button;</pre>
}
}

	<svg></svg>
	<g role="button" tabindex="2"></g>
	<rect></rect>
	<text></text>
	<tspan>Click Me</tspan>
8	

Team Activity

How does your chosen toolkit (either one) support accessibility?

Let's return to the topic of supporting access...

Today we *have* the ability to make technology accessible, but we often lack the *desire or awareness* to make it so.

Access to technology is democratizing. It is our responsibility, as creators of technology to accommodate all people, regardless of ability.

What are some ways that you can be an ally and advocate for accessible design?

References

References i

Baddeley, A. (1992). Working memory. Science, 255(5044):556–559.

- Boyd, L. H., Boyd, W. L., and Vanderheiden, G. C. (1990).
 The graphical user interface: Crisis, danger, and opportunity. Journal of Visual Impairment & Blindness, 84(10):496–502.
- Harper, S., Khan, G., and Stevens, R. (2005).
 Design checks for java accessibility.
- Mynatt, E. D. and Weber, G. (1994).
 Nonvisual presentation of graphical user interfaces: Contrasting two approaches.

In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, CHI '94, page 166–172, New York, NY, USA. Association for Computing Machinery.

References ii

盲 Thatcher, J. (1994).

Screen reader/2: Access to os/2 and the graphical user interface.

In *Proceedings of the First Annual ACM Conference on Assistive Technologies*, Assets '94, page 39–46, New York, NY, USA. Association for Computing Machinery.

theverge.com (2021).

40 years of icons: the evolution of the modern computer interface.

📔 Wikipedia (2021).

Computer terminal.